
The proposed method can be extended in a natural way to modeling of the optical charac- 
teristics of fibrous composites as well as to modeling of the effect that structural macro- 
defects having their own peculiar distributions with respect to size and physical properties 
have on the physical characteristics. 
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THE THEORY OF THE RHEOLOGICAL PROPERTIES OF DISPERSE SYSTEMS 

A. Yu. Zubarev, E. S. Kats, 
and A. N. Latkin 

UDC 539.37:532.135 

The effective rheological characteristics of stacking identical viscoelastic 
spheres in a matrix of another viscoelastic material are estimated by methods 
of ensemble averaging theory. 

The intensive development of technological processes utilizing stacks of fine particles 
as working bodies requires the development of physicomathematical models that permit relating 
the macrorheological properties of such systems to the singularities of their configuration 
can be given within the framework of the continual approximation, when the disperse mixture 
is considered as a homogeneous continuum whose behavior is described by the methods of the 
mechanics of continuous media. However, even in this case the problem that has still not 
been solved by far arises of calculating the effective charcteristics of a heterogeneous mate- 
rial as a function of the properties of its phases or components and the singularities of 
their arrangement. 

Fig. I. Model of the contacts be- 
tween spheres. Dashes are the 
geometric surfaces of continuation 
of the spheres. 

A. M. Gor'kii Ural State University, Sverdlovsk. Translated from Inzhenerno-Fizicheskii 
Zhurnal, Vol. 58, No. 5, pp. 721-729, May, 1990. Original article submitted December 28, 
1988. 
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An extensive literature, whose surveys can be found in [1-3], is devoted to methods of 
qualitative estimates of the effective rheological properties of composites with isolated 
inclusions. The system characteristics, whose particles form a connected skeleton are in- 
vestigated much less. Meanwhile precisely such systems play a very large part in applica- 
tions [4-8]. Certain formulas for the determination of effective elastic moduli and vis- 
cosity of porous materials, that are extensively utilized in powder metallurgy, are obtained 
in [4, 8] and discussed briefly in [7]. However, these papers are based on heuristic models 
and although their results are completely suitable for simple engineering computations, the 
further development of the theory and practice of disperse systems requires the development 
of more sequential methods of determining their rheological properties. 

Stacks of identical viscoelastic particles in a matrix of a different viscoelastic mater- 
ial are investigated below. Such a consideration complicates the calculation somewhat as 
compared with the stacks ordinarily investigated in air but then possesses great generality. 
For simplification we consider the particles mutually penetrating spheres without deforma- 
tion (Fig. i). The investigation is performed on the basis of a rigorous theory of ensemble 
averaging developed in [9] and applied in [i0] to describe the viscoelastic properties of 
a composite with isolated inclusions. The general ideas of [9] were utilized earlier in [ii] 
to analyze the thermophysical properties of finely dispersed stacks. 

MACROSCOPIC EQUATIONS 

The behavior of viscoelastic matrices and particles can be described by using their bulk 
kj and shear ~j elastic moduli as well as the bulk ~j and shear qj viscosities (j = 0, i) 

[12]. The problem is to determine the effective coefficients k, ~, q, and ~, referring to 
the material as a whole. 

For the sequel it is convenient to apply the Fourier time transformation to the matrix 
and particle deformation equations. The relationships obtained agree formally with the de- 
formation equaitons for elastic materials [i, i0], but in place of the elastic moduli kj and 
Bj the equations 

~j = k~ + i ~ j ,  ~j : ~j + i ~ ,  i = ]/-----7 ( 1 )  

are therein. Taking the average in conformity with the general theory [9, i0], of the Fourier 
representation of the particle and material deformation equaitons over the whole physically 
realizable particle positions in the mixture, we arrive at the macroscopic equations of de- 
formation of a composite that relates the mean (measurable) values of the material displace- 
ment vector u, the viscoelastic stress o and the bulk particle 

- -  d s ~ u  - -  V~,  o : I~ d i v  u + 27e ,  d : ~ --}- [~ (d 1 ---  do), ( 2 ) 

where the components of the pure shear tensor e are expressed in the usual way [12] in terms 
of the derivatives of u with respect to the coordinates. 

The effective bulk ~ and shear y moduli are determined from the relationships: 

? 

([5 - -  [5o) d i v  u : ([5~ - -  [5o) J d iv  u ' d r ,  
O r<~a (3) 

(~ -- ?o)e ~- (?~ -- %) J e ' d r ,  
U r<~a 

obtained in [i0] and equivalent to those presented in [1-3]. Here integration is over the 
volume of a certain arbitrarily separated test particle, whose center is at a point to which 
div u and e are referred. Within the framework of [9, i0] the deformations div u* and e* 
within the test sphere are determined from an auxiliary problem formed by taking the average 
of the particle and matrix deformation equiatons over all possible particle positions under 
the condition that the position of the test sphere is fixed. 

TEST PARTICLE PROBLEM 

The apparatus of conditional averaging is developed in [9] and used [I0] in application 
to mixture with isolated particles. Omitting the details, let us mention that in systems 
with particles making contact the problem of a test inclusion agrees formally with that ob- 
tained in [i0] and has the form 
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Fig. 2. Functions f(r) and ~(r) that are in (A.I) (smooth lines) 
and their step approximations utilized in (8) and in later computa- 
tions. The values of =(i) and f(i) are presented in (A.2). 

Fig. 3. Comparison of the results of computations of the Young's 
modulus E of a composite material consisting of a skeleton of iron 
particles placed in a copper matrix carried out according to the 
proposed theory (solid line) with experiments [14] (points and 
computations [14] by different methods (dashed lines). E in kg/mm 2. 

u*=u§ n ~ * = n . + . ~  r :a ;  

u-+O,  r - ~ ;  

: l#' div u 4- 2y 'L d' = d o 4- (d - -  do) p' (r~) 
p ' (4) 

V : ~ + (~ - -  %) P' (Q , ~' : ~o + ( ~ -  ~ ~' (~) 
P s 

Here u , e  , and a are the mean values occurring in (2) and (3) that are referred to the site 
of the test sphere position. They are considered as given in (4). The quantities wita carets 
above them are perturbations introduced by the test particle into the appropriate mean fields, 
p'(r) is the conditional bulk particle concentration near the fixed test particle (the prob- 
ability of finding r within one of the particles surrounding the test sphere). It doe~ not 
equal the mean concentration 0 of the disperse phase in the material since the particles can- 
not penetrate freely within each other and a fixed particle "pushes apart" the neighbors. 
The properties p'(r) for mixtures with isolated spheres are discussed in [13]. In particu- 
lar, as r § ~ p' + p, which corresponds to weak correlation between the positions of remote 
particles. Solving (4) by some method of a specific function p'(r), we find u*, dependent 
on $ and u as parameters. Substituting this value into the integrals of (3) we obtain a sys- 
tem of equations to determine ~ and y, which permits finding the values of these character- 
istics of the medium by a self-consistent method. 

CONDITIONAL BULK CONCENTRATION OF THE DISPERSE PHASE 

The ~'" ~ ~-~ ~ " ~4 ~ ~ ~ ~'" ~^ ~'~-~ =~p ..... form of p'(r) is ~ c ~ a ~ e ~  ~ y  ......... of particle -~^ ~-~ - =~=c~=n~ in the material. 
In conformity with the general ~h=oL~ [9, ~Jj ...... quantity is defined thus 

p'(r) = f ~ ( / ) d r ' ,  (5 )  
fr--r'" '~a 

where ~ is a binary particle distribution function that depends on the specific method of 
arranging the particles in the mixture and should be determined from the solution of an in- 
dependent statistical problem. Within the framework of the theory being utilized ~ is con- 
sidered known. 

As in [Ii], we consider the stacking structure often encoutered when the mean distance 
b (b ~ 2a) between the centers of the spheres making contact and the coordination number 
equal to the mean number of contacts per unit surface of the test sphere are known. The 
simplest form of ~,corresponding to this stacking is 
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O~ r ~ 2 a ,  

( r ) = ~ 6 ( r - - b ) 4 -  ~ , r >  2a, ( 6 )  

U 

where 6(x) is the delta function. The first component here takes into account that the cen- 
ters of the spheres making contact with the test sphere are at a distance b from its center, 
the second is the circumstance that the remaining particles do not penetrate the test particle 
and consequently their centers cannot be at distances less than 2a from the center of the 
fixed test sphere. Moreover, the influence of the test sphere on the positions of particles 
removed at a distance greater than 2a from it. 

Substituting (6) into (5) we arrive at a complex dependence of p' on r whose explicit 
form is given in the appendix and is shown by smooth lines in Fig. 2. As is seen, p'(a) # 0, 
which reflects the finiteness of the contact spots (domains of model sphere intersection (see 
Fig. i)). Let us note that within the framework of the problem (4), the contact spots "are 
spread out" over its surface because of averaging of the deformation equations relative to 
the positions of particles surrounding the test sphere, and the loaded state of a fictitious 
continuum containing the test sphere is described by the unit moduli ~' and 6' on its whole 
surface. 

EFFECTIVE VISCOELASTIC MODULI 

We shall consider below that the following strong inequality is satisfied 

~2 ~ {l~l, ]YJl}/{dJ} a2, ] = O, 1. ( 7 )  

Physically (7) means that inertial effects are weak in scales on the order of a, on whose 
basis we shall later neglect the left sides in the first two equations in (4). Estimates 
show that (7) is satisfied for real systems up to high-frequency sound waves. Meanwhile, 
the validity of (7) means that the characteristic scale of the variation of u, div u and e 
is much greater than a and near the test sphere divu, e=const can be assumed. Let us note 
that this latter condition is the usual requirement for a continual approximation. 

When using p'(r) obtained from (5) and (6), the problem (4) allows only numerical so- 
lution. For approximate analytic computations it is convenient to approximate p'(r) by step 
functions such as is shown in Fig. 2, say. Exactly the same approximation was used succcess- 
fully in [ii] for computationsof the heat conduction of the same stack as here. 

In this approximation (4) agrees formally with the problem on stationary deformation 
of a sphere in an infinite medium whose properties agree with the effective properties of 
the material but separated from this sphere by concentric layers of thicknesses =i - a, 
~= - ~i, and ~3 - == (see Fig. 2), where the viscoelastic moduli of these layers are defined, 
in conformity with the last equality in (4), thus: 

= + = + - p, 

k - -  1, a < r < ~ , ;  k = 2 ,  ~ l < r < ~ ;  k = 3 ,  ~ 2 < i r < ~ ,  ( 8 )  

where the meaning of Pk is clarified in Fig. 2 and their explicit form is given in the Ap- 
pendix. 

To determine the effective bulk modulus 6 it is convenient to consider that the medium 
as a whole experiences multilateral compression even near the test sphere: 

1 
u : ~ er, 8 = div u = const. ( 9 )  

3 

The solutions of (4) in the approximation (7) in each of the partition steps (8) agree form- 
ally with those presented in [i] with the elastic characteristics of the matrix replaced by 
the effective viscoelastic moduli ~k, Yk" In particular, near the test sphere (r E a) 

u* = _ 1  Aer, A = const. ( 1 O) 
3 

In order to evaluate the shear modulus y, we assume that the medium as a whole experiences 
pure shear and near the test particle: 

u~ = ex; uy = - - e y ;  u~ = O; e = const, ( 1 1 )  
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TABLE I. Dependences of the Effective Young's Modulus 
E of Composites on the Bulk Concentration of Spherical 

95 
75 
70 

80 
75 
68 
66 

19500 
18340 
18130 

23800 
21300 
19200 
17400 

Inclusions 

Matrix Particle 

Copper Iron 

Copper Molybdenum 

E, kg/nm 2 

19300 
18080 
17790 

25490 
24400 
22460 
21280 

3 4 

19500 
18500 
18000 

24960 24000 
22460 21600 
18240 18600 
13860 17500 

Note. Values of the Young's modulus of two composite 
materials. Columns: i) Experiment [14]; 2, 3) Computa- 
tions [14]; 4) Proposed theory for ~ selected according 
to recommendations [15] for particles concentration 
in the free filling state p0 = 0.6. 
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Fig. 4. Computations of the dependences of the effec- 
tive bulk $ and shear q viscosities of stacks of 
viscoelastic particles in air according to the formulas 
of [4] (dashed lines) and by the proposed theory (solid 
lines). The numbers at the curves are values of the 
concentration p0 in the free filling. 

where x, y, and z are Cartesian coordinates of the radius-vector with origin at the center 
of the test sphere. In this case the solutions of (4) again agree with those presented in 
[i] at each step with the replacement noted above taken into account. Within the particle: 

tt~ ~ -= [Blr - -  (3[31 - -  2y~) r3B.~ ] e sin 2 0 cos 2% 

= o "h r3B2 e s i n ~ c o s 0 c o s 2 q ) ,  ( 1 2 )  
J 

i [ u*~ = - -  B l r - -  5~1-+- - - ~  ~A taB2 . e sin 0 sin 2(0, BI, Bz = const, 

where O and ~ are the polar and azimuthal angles in a spherical coordinate system with origin 
at the center of the test particle and polar axis directed along z. 

The Cartesian coordinates of the tensor e*, determined from (12) that are in the integrals 
of (3) are 

e . x = _ _ e .  = [B1 21 ( 4 ) J ~ -5-  ~ +  7 'a a~B~ e, (13) 

where the rema:ining eij equal to zero. 
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Substituting (9) and (i0) into (ii), (13) and (3), we obtain after integration 

(14) 

3 '=%-{ - (7 t - -%)  B~----ff-(~]+ a2B~ p. 

The c o n s t a n t s  A, g~ and B 2 can be de te rmined  from c o n t i n u i t y  c o n d i t i o n s  fo r  the  d i s p l a c e -  
ments and the normal components of the force density on the particle surface (r = a) and on 
the approximation step boudnaries (8), i.e., for r = ~(i), ~[2), and ~(3). An analogous 
"multilayer" problem is examined in detail in [i]. The system of linear algebraic equations 
coresponding to the mentioned boundary conditions and containing A, B l and B 2 together with 
other constants of integration (4) can be obtained exactly as was done in [i]. It is quite 
awkward and consequently not presented. 

This system of boundary condidtions contains the effective moduli ~ and ~ as parameters, 
consequently, it must be solved together with (8) and (14), which is done numerically most 
conveniently of all. A comparison of the results of computations by the method proposed here 
with the data of experiments [14] and computations by other methods utilized in [14] is pre - 
sented in Fig. 3 and Table i. It is seen that the proposed theory describes experiments 
better than traditional methods. 

The question of the selection of the values of the coordination number ~ and the mean 
spacing between centers of the spheres making contact b occurs in the execution of practical 
computations. We used the recommendations in [15.] here according to which ~ is the function 

0 1/3 0 p0 determined in this paper, while b = 2a(p /p) , where p is the bulk particle concentra- 
tion in the free stacking state. As p increases the coordination number ~ changes continu- 
ously and a continuous line (see Fig. 3) is constructed as the envelope of curves correspond- 
ing to these values ~ '= ~(p0) [15] of 0 < p0 < i. 

It follows from (I), (8) and (14) that in the general case the effective moduli ~ and 
7 are complex functions of the frequency uJ. For slow processes, when o~{qj, ~j } << {kj, ~j }, 
it can be assumed with linear accuracy in 0J: 

{k, ~}----{~, ~'}o,=0, {~, n} = -  ~0 {~'0~ ~1~=0 " 

(15) 

Substituting (15) into (2) and using the inverse Fourier transform in the time, that 
results in replacement of the factor i~ by the operator a/at, we obtain 

l ( k - t - ~  0 d i v u @ 2  ~-i-~ 0 = e, (16) 

from which it follows that ~ and q have the meaning of effective bulk and shear viscosities 
of the material. 

A comparison of calculations of ~ and q by the theory proposed here with computations 
by formulas from [4, 5, 7, 8] for stacks of incompressible viscoelastic particles in air 
(~, k0=0, ki>>~i>>~i-~]) is presented in Fig. 4. It is seen that the heuristic formulas 
of these papers can be utilized to estimate the shear viscosity of powder stacks. The re- 
sults for ~ that follow from [4, 5, 7, 8] become unrealistically large as P + 1 (more ac- 
curately, $ + ~). We again utilized the recommendations in [15] in the computations to de- 
termine ~ and b and constructed an envelope of the curves obtained for different p0. 

Setting ~ = 0 in (6), which corresponds to no contacts between the particles, we arrive 
at relationships for ~ and y that were obtained earlier in [i0] for a composite with isolated 
inclusions that, as is shown in [10], describe known experiments well. Therefore, the pro- 
posed method permits description of materials with isolated particles and those making con- 
tact from a single viewpoint, where no constraints are imposed on the relationship between 
the properties of the particle and the matrix. In particular, pores can be inclusions, then 
it is necessary to set 61, YI = 0. This method affords the possibility of successively tak- 
ing into account the influence of the kind of particle stacking given by the function ~(K), 
on the effective properties of a composite. 

552 



The rigor and generality of the proposed theory are achieved at the cost of a loss of 
computation simplicity inherent in many empirical methods, consequently, it is not convenient 
for practical engineering usage. However, it can be basic for the analysis of more physically 
complex situations when intuitive constructions become too unreliable. Consequently, we note 
that the awkwardness of the rigorous results is a typical situation for the majority of sta- 
tistical physics domains. 

APPENDIX 

Using a distribution function of the form (6) in the integral of (5), we arrive at the 
following representation for the conditional bulk concentration whose graph is presenLed in 
Fig. 2 (smooth lines) 

9' (r) = ~af (r) -+- 9t~ (r); ~ ---- 3.14... { b~--a~--r~)2 [ (b~--o.~ r~l~ ] 
b r - -  -{-2 a 2 -  - -  

[ (r) = -- 2r , 2r ' 

r ~ =  [ 
2b z - -  a z - -  a "V2-~--~ a z 2b ~ - -  a 2 -F a - I / ~  4- aZ ] 

2b ' 2b ] ' 

f ( r )  = o, r ~ ;  

27 -- 56 4- 30x = -  x ~ ~(r)= , ] < x <  3, 
16x 

= O, x <  1; ~ = l, x > 3 ;  x - - r / a .  

(A.I) 

The step approximation of f and ~ used for the computations is shown by broken li:les in 
Fig. 2. The parameters there have the following values: 

~ ( 1 ) _ a + ] / ~ , ,  ~(2)= b + - l / ' ~ - - a  z,. ~(3) : 2a; 
2 2 

f(i)=[(rj), / =  1, 2, 3; (A .2 )  

r z - ~ a ;  rk----- - [ / ~ - - a  2; G---- 2a; 

Oh = ;~f(h) + ~ (tO. 

NOTATION 

a is the particle radius; b is the mean spacing between centers of particles making con- 
tact; B i are constants introduced in (12); d is the mean density; e is the pure shear tensor; 
I is the unit tensor; kj are bulk elastic moduli; n is the unit normal vector; R. R' are radius 
vectors; r=R--R'; is time; u is the material displacement vector; ~i are quantities irtro- 
duced in (A.2); $i, Yi are effective bulk and shear elastic moduli; e=divu; ~ is the ccor- 
dination number; q is the shear viscosity; ~i are shear elastic moduli; ~ is bulk visccsity; 
p, p' are mean and conditional bulk concentrations; p ~ is the particle bulk concentration 
in the free stacking state; ~ is the viscoelastic stress; ~(r) is a binary distribution func- 
tion; m is the frequency. Subscripts: 0 and i refer to the dispersion and dispersed phases, 
respectively, and the asterisk superscript to quantities determined within the test particle. 
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